Nvidia Container Toolkit安装教程
本教程适用于Debian或RHEL系列的Linux系统,使用Ubuntu24.04进行演示,分别提供了联网安装方式和离线安装方式,适用于网络较好的用户及网络较差的用户,希望本篇文章能为你解决问题。
本文章已经默认您拥有了一定Docker的基础,如果您第一次尝试使用Docker请先查看这篇文章【容器应用系列教程】容器介绍、Docker的安装和基本操作
一、安装Docker
可以参考这篇文章Docker安装教程
二、安装Nvidia Container Toolkit
1.使用联网方式安装
如果您的网络条件较差,可以跳过联网方式安装,直接使用离线方式安装
配置存储库
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
更新缓存
sudo apt-get update
安装Nvidia Container Toolkit
sudo apt-get install -y nvidia-container-toolkit #网络条件不好的这一步可能会很慢
修改daemon.json文件
sudo nvidia-ctk runtime configure --runtime=docker
重启Docker守护进程
sudo systemctl restart docker
测试安装
sudo nvidia-ctk --version
sudo docker run --rm --runtime=nvidia --gpus all ubuntu nvidia-smi
#如果输出以下信息代表安装成功
Unable to find image 'ubuntu:latest' locally
latest: Pulling from library/ubuntu
20043066d3d5: Pull complete
Digest: sha256:c35e29c9450151419d9448b0fd75374fec4fff364a27f176fb458d472dfc9e54
Status: Downloaded newer image for ubuntu:latest
Mon Dec 22 05:19:01 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 590.44.01 Driver Version: 591.44 CUDA Version: 13.1 |
+-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GeForce RTX 2080 Ti On | 00000000:01:00.0 On | N/A |
| 42% 51C P0 64W / 250W | 1266MiB / 22528MiB | 7% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 0 N/A N/A 25 G /Xwayland N/A |
| 0 N/A N/A 48 G /Xwayland N/A |
+-----------------------------------------------------------------------------------------+
如果使用联网方式安装完成,即可结束本教程,恭喜您已经配置完成了!
2.使用离线方式安装
自行下载NVDIA Github上存储库中的文件,上传到服务器
https://github.com/NVIDIA/libnvidia-container/tree/gh-pages/stable/deb/amd64
这个存储库除了提供deb安装包,还有rpm包,本教程使用Ubuntu24.04进行演示
使用搜索功能,搜索最新的版本号(截至文章撰写日期最新版本为1.18.1),具体安装包的功能如下,其中最后两个包可选择不安装
libnvidia-container1_1.18.1-1_amd64.deb #基础库包,提供了最基本的功能,其他包都依赖于它
libnvidia-container-tools_1.18.1-1_amd64.deb #基础工具包,依赖于 libnvidia-container1
nvidia-container-toolkit-base_1.18.1-1_amd64.deb #基础组件包,依赖于前面的包
nvidia-container-toolkit_1.18.1-1_amd64.deb #主要的工具包,依赖于以上所有包
libnvidia-container-dev_1.18.1-1_amd64.deb #开发包,只在进行开发时使用(可不装)
libnvidia-container1-dbg_1.18.1-1_amd64.deb #调试符号包,只在调试问题时使用(可不装)
下载好后安装包
sudo dpkg -i *.deb
#或者使用下面的命令逐一安装,注意安装前后顺序
sudo dpkg -i libnvidia-container1_1.18.1-1_amd64.deb
sudo dpkg -i libnvidia-container-tools_1.18.1-1_amd64.deb
sudo dpkg -i nvidia-container-toolkit-base_1.18.1-1_amd64.deb
sudo dpkg -i nvidia-container-toolkit_1.18.1-1_amd64.deb
sudo dpkg -i libnvidia-container-dev_1.18.1-1_amd64.deb
sudo dpkg -i libnvidia-container1-dbg_1.18.1-1_amd64.deb
修改daemon.json
sudo nvidia-ctk runtime configure --runtime=docker
测试安装
sudo nvidia-ctk --version
sudo docker run --rm --runtime=nvidia --gpus all ubuntu nvidia-smi
#如果输出以下信息代表安装成功
Unable to find image 'ubuntu:latest' locally
latest: Pulling from library/ubuntu
20043066d3d5: Pull complete
Digest: sha256:c35e29c9450151419d9448b0fd75374fec4fff364a27f176fb458d472dfc9e54
Status: Downloaded newer image for ubuntu:latest
Mon Dec 22 05:19:01 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 590.44.01 Driver Version: 591.44 CUDA Version: 13.1 |
+-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GeForce RTX 2080 Ti On | 00000000:01:00.0 On | N/A |
| 42% 51C P0 64W / 250W | 1266MiB / 22528MiB | 7% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 0 N/A N/A 25 G /Xwayland N/A |
| 0 N/A N/A 48 G /Xwayland N/A |
+-----------------------------------------------------------------------------------------+
评论